EISEVIED

Contents lists available at ScienceDirect

European Journal of Pharmacology

journal homepage: www.elsevier.com/locate/ejphar

Short communication

Peripheral cannabinoid CB₁ receptors inhibit evoked responses of nociceptive neurones *in vivo*

Sara Kelly a,*, Lucy F. Donaldson b

- ^a Division of Animal Physiology and Institute of Neuroscience, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, United Kingdom
- ^b Department of Physiology and Pharmacology, Medical Sciences, University of Bristol, BS8 1TD, United Kingdom

ARTICLE INFO

Article history: Received 23 November 2007 Received in revised form 20 February 2008 Accepted 3 March 2008 Available online 13 March 2008

Keywords: Cannabinoid CB₁ receptor Nociceptor Antinociception

ABSTRACT

We investigated the effect of peripheral administration of a selective cannabinoid CB_1 receptor agonist arachidonyl-2-choroethylamide (ACEA), on evoked responses of primary afferents *in vivo*. Extracellular recordings were made from filaments of the saphenous nerve that responded to noxious mechanical stimulation of their receptive fields and effects of ACEA (30 and 50 μ g/100 μ l, i.a.) were studied. ACEA significantly inhibited evoked responses, effects that were blocked by co-administration of the cannabinoid CB_1 receptor antagonist AM251 (30 μ g/100 μ l). These results demonstrate a cannabinoid CB_1 receptor-mediated inhibition of primary afferent nociceptor excitability and provide further support for a peripheral site of action of cannabinoids.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Cannabinoids are able to modulate nociception in the periphery (Hohmann, 2002). Evidence exists for both cannabinoid-1 (CB₁) and cannabinoid-2 (CB₂) receptors in peripheral tissues (Maccarrone et al., 2003; Stander et al., 2005). However, little is known about how cannabinoids modulate nociception at this level. It has been postulated that cannabinoid receptor agonists have a direct action on the peripheral terminals of primary afferent neurones (Kelly et al., 2003; Millns et al., 2001; Sagar et al., 2005), but further investigation is required.

Evidence to date suggests an important role for cannabinoid CB₁ receptors. In dorsal root ganglia, cannabinoid CB₁ receptors are expressed by small diameter peptidergic and non-peptidergic neurones as well as large diameter neurones (Ahluwalia et al., 2002; Bridges et al., 2003), where they undergo axonal translocation and insertion on the peripheral endings (Hohmann and Herkenham, 1999). Several previous *in vitro* studies have demonstrated an inhibitory effect of cannabinoid CB₁ receptor activation on primary sensory neurone function (Agarwal et al., 2007; Millns et al., 2001; Sagar et al., 2005) and an inhibition of neuropeptide release (Ellington et al., 2002; Richardson et al., 1998). Peripheral cannabinoid CB₁ receptor activation *in vivo* inhibits spinal somatosensory transmission (Kelly et al., 2003) and is analgesic (Calignano et al., 1998; Gutierrez et al., 2007). Recently it was demonstrated that the analgesic effects of systemically administered cannabinoids are largely abolished in

transgenic mice in which the cannabinoid CB_1 receptor is deleted from Nav1.8 expressing C-fibre nociceptors (Agarwal et al., 2007).

Collectively, these aforementioned studies are suggestive of the presence of functional cannabinoid CB₁ receptors on the peripheral terminals of primary afferent nociceptors and imply a critical role in inhibiting their excitability. *In vivo* data on the effect of cannabinoid CB₁ receptor activation on nociceptive neuronal responses is lacking. Further studies are required to fully elucidate the mechanisms of cannabinoid CB₁ receptor mediated peripheral antinociception. Our aim was to test the hypothesis that peripheral cannabinoid CB₁ receptor activation is able to inhibit evoked responses of mechanonociceptive neurones *in vivo*.

2. Materials and methods

2.1. Animals

Male Wistar rats (B and K, UK) (250–350 g) housed in temperature and humidity controlled holding rooms on a 12:12 h light: dark cycle were used in this study. Food and water were made available *ab libitum*. All experimental procedures were carried out in accordance with the Animals (Scientific Procedures) Act 1986 and IASP guidelines.

2.2. Drugs

Sodium pentobarbital was obtained in its sodium salt form from Sigma (Dorset, U.K) and was made up in house to allow i.p. and i.v. injection for anaesthetic induction and maintenance respectively. Arachidonyl-2-choroethylamide (ACEA) was obtained from Tocris U.K.

^{*} Corresponding author. Tel.: +44 115 951 6130; fax: +44 115 951 6302. E-mail address: sara.kelly@nottingham.ac.uk (S. Kelly).

(Ltd) in 100% ethanol. ACEA was re-suspended in a vehicle of 5% ethanol and saline with tween 80. AM251 (N-(Piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophen yl)-4-methyl-1H-pyrazole-3-carboxamide) was also purchased from Tocris and was co-administered with ACEA, or alone in the above vehicle.

2.3. Surgical procedures

Anaesthesia was induced with sodium pentobarbital (60 mg/kg, i.p.) and the external jugular vein and trachea were cannulated, for maintenance of anaesthesia (10 mg/kg/h, i.v.) and clearing of the airways respectively. A cannula for drug delivery was inserted into the right femoral artery and advanced to the point of bifurcation of the descending aorta. The skin and connective tissues overlying the medial aspect of the left leg were incised and the lower part of the leg was attached to a platform for stability. An oil pool was created using skin flaps and filled with warmed (37 °C) mineral oil (Sigma, U.K). The saphenous nerve was dissected free at a point distal to the knee joint and sectioned centrally. The cut saphenous nerve was placed on a dental mirror teased and placed onto bipolar platinum electrodes. The saphenous was teased until fine filaments (typically containing 1-4 afferent fibres) responding to mechanical probing (glass rod with a 1 mm tip) of the dorsal surface of the hindpaw were isolated. The conduction velocities of the units were ascertained by electrical stimulation the receptive field (0.3 Hz, 0.5 ms pulse duration, 3-7 mA).

A mechanical stimulator (Dept Physiology, Mechanical workshop) was positioned over the most responsive area of the receptive field and noxious mechanical stimuli (~100 g, 5 s duration @ 5 min intervals) were delivered and evoked activity recorded. Evoked responses were recorded until stable and the mean afferent firing rate associated with the latter 2–3 stimuli were taken as control baseline level which was normalised to 100%. Neuronal activity was digitised by a data acquisition system (CED1401, Cambridge Electronic Design, Cambridge, UK) and stored on a PC for off-line analysis. The mean firing rate/mechanical stimulus was determined using Spike 2 software (Cambridge Electronic Design, Cambridge, UK) and the % of control response was calculated.

2.4. Drug administration

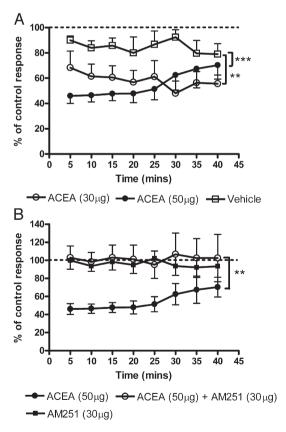
Effects of 100 μ l vehicle (5% ethanol in saline and tween 80) (n=6) or ACEA (30 and 50 μ g) (Tocris, U.K) (n=7/6) on mechanically-evoked responses were followed for 40 min at 5 minute intervals. In separate groups of rats the effect of ACEA in the presence of AM251 (30 μ g/100 μ l) (n=7) and the effects of AM251 (30 μ g/100 μ l) alone (n=7) on noxious mechanically-evoked firing of primary afferents were studied. All drugs were injected by close intra-arterial injection.

2.5. Statistics

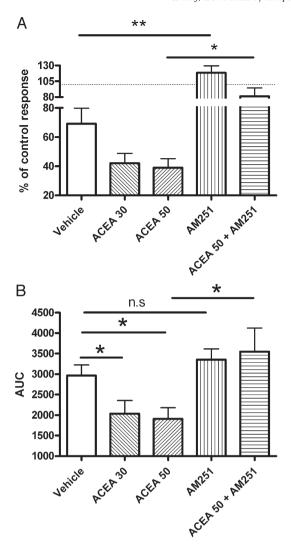
Data are expressed as mean and s.e.m. Statistical analysis was carried out with unpaired t-test and one way ANOVA, where appropriate, *P <0.05, $^{**}P$ <0.01.

3. Results

3.1. Responses of recorded units to noxious mechanical stimulation


Multi-unit recordings were made from primary afferent neurones of the saphenous nerve that innervate the dorsal surface of the rat hindpaw. In each experiment, recordings were made from 1–4 mechanosensitive afferents. Conduction velocities ranged from 10.38–0.29 ms⁻¹, placing them in the A δ - and C-fibre velocity range (Lynn and Carpenter, 1982). All the units recorded responded to mechanical stimulation of the receptive field with a glass rod (but not

brush) and exhibited slowly adapting responses to 5 s noxious mechanical stimulation of the receptive field.


3.2. Effect of ACEA on the responses of primary afferent neurones to noxious mechanical stimulation

Peripherally administered ACEA (30 and $50 \,\mu g/100 \,\mu l$, i.a.) inhibited noxious mechanically-evoked responses of primary afferent neurones (Figs. 1 and 2). The inhibitory effect of ACEA (30 and 50 μg) was significant compared to that of vehicle (P < 0.01 and P < 0.001 respectively) (Fig. 1). Furthermore, the mean maximal inhibitory effect of ACEA 30 and 50 μg was greater than that of vehicle (Fig. 2A). Area under the curve analysis (AUC) over the full time course (0–40 min) demonstrated that ACEA (30 and 50 $\mu g/100 \,\mu l$, i.a.) had significantly greater inhibitory effects compared to vehicle (Fig. 2B).

To confirm the involvement of peripheral cannabinoid CB_1 receptors in mediating the inhibitory effects of ACEA, co-administration of the cannabinoid CB_1 receptor antagonist AM251 was carried out. The inhibitory effects of ACEA (50 μ g/100 μ l) were completely blocked by the co-administration of AM251 (30 μ g/100 μ l, i.a.) (Figs. 1B and 2) and the mean maximal inhibitory effect of ACEA in the presence of AM251 was not significantly different to that of vehicle (Fig. 2A). The AUC of the effect of ACEA in the presence of AM251 was significantly greater than ACEA alone (P<0.05) (Fig. 2B). These data indicate that the cannabinoid CB_1 receptor is solely responsible for mediating the reported antinociceptive effects of ACEA. In our hands, AM251 had only minor effects when administered alone, the time course of effect of AM251 was

Fig. 1. ACEA inhibits noxious mechanically-evoked responses of primary afferent neurones via CB₁ receptor activation. (A) ACEA (30 and 50 μ g/100 μ l, i.a.) (n=7/6) had a dose dependent inhibitory effect on mechanically-evoked responses. Vehicle (5% ethanol/saline/tween 80) (n=6) had minor effects on mechanically evoked responses. (B) The inhibitory effect of ACEA (50 μ g/100 μ l, i.a.) was blocked by the coadministration of AM251 (30 μ g/100 μ l, i.a.) (n=7). AM251 administration alone (n=7) had only minor effects on mechanically-evoked responses. Data analysed with Kruskall Wallis one-way ANOVA, **P<0.01, ***P<0.001 vs vehicle.

Fig. 2. Analysis of the inhibitory effects of ACEA on noxious mechanically-evoked responses of primary afferent neurones. (A) The mean maximal inhibitory effect of ACEA (30 and 50 μg/100 μl, i.a.) (n=7/6) was greater than that of vehicle (5% ethanol/saline/tween 80) (n=6) and ACEA (50 μg/100 μl, i.a.) when in combination with AM251 (30 μg/100 μl, i.a.) (n=7). The mean maximal facilitatory effect of AM251 (30 μg/100 μl, i.a.) (n=7) was significant compared to vehicle. (B) Area under the curve (AUC) analysis for the effect of vehicle (n=6), ACEA alone (n=7/6) and when co-administered with AM251 (n=7), and the effect of AM251 alone (n=7). Data analysed with Mann Whitney, $^*P<0.05$, $^*P<0.01$.

not significantly different to that of vehicle (Fig. 1B). A small but significant facilitatory effect was seen when the mean maximal effects of AM251 and vehicle were compared (P<0.01) (Fig. 2A), however the AUC of the effect of AM251 and vehicle were similar (Fig. 2B).

4. Discussion

The anatomical locus and receptor mechanisms that underlie the peripheral analgesic effects of cannabinoids are unknown. Our data is the first *in vivo* electrophysiological evidence suggesting that activation of cannabinoid CB₁ receptors on the peripheral terminals of nociceptive neurones inhibits their responsiveness to noxious stimulation. Here, selective activation of cannabinoid CB₁ receptors by ACEA was able to inhibit mechanonociceptive (both Aδ- and C-fibre) neuronal responses, effects that were blocked by the cannabinoid CB₁ receptor antagonist AM251. ACEA had a rapid onset of effect (inhibition by the time the first stimulus was delivered) and the

saphenous nerve was sectioned proximally removing the possibility of central modulation. We used a local intra-arterial injection method and low concentrations of ACEA that are unlikely to have systemic effects (Hillard et al., 1999; Kelly et al., 2003). For these reasons we are confident that the effects of ACEA reported here were mediated at the peripheral level and our data suggests a direct effect on the primary afferent terminal. The existence of a peripheral endocannabinoid tone is controversial (Calignano et al., 1998; Kelly et al., 2003; Richardson et al., 1998). In the present study we saw only a minor facilitatory effect of AM251 on mechanically evoked responses at concentrations used previously that attenuated the antihyperalgesic effects of WIN 55,212-2 (Johanek and Simone, 2004). Therefore the present data cannot distinguish between the presence of an endocannabinoid tone and an inverse agonist effect of AM251.

High concentrations of ACEA have TRPV1 mediated effects on sensory neurones (Baker and McDougall, 2004). However, this is unlikely under our experimental conditions as the concentrations used are low and the inhibitory effects of ACEA are completely abolished by AM251, suggesting a cannabinoid CB₁ receptor specific action. Furthermore, the potent and selective TRPV1 antagonist iodoresiniferatoxin has no effect on the peripheral antinociceptive effects of ACEA (Kelly et al., 2003).

The present study and others implicate an important role for the cannabinoid CB₁ receptor in the modulation of nociceptor excitability. It is possible that this effect is mediated by the modulation of ion channel function (Binzen et al., 2006; Sade et al., 2006). Cannabinoid CB₁ receptors are localised appropriately to contribute to the aforementioned effects as they are expressed by both A- and C-fibres (as studied here) and co-expressed with markers of nociceptive neurones (Agarwal et al., 2007; Ahluwalia et al., 2002; Hohmann and Herkenham, 1999). Activation of peripheral cannabinoid CB₁ receptors inhibits neuropeptide release (Ellington et al., 2002; Richardson et al., 1998) and suppresses c-Fos protein like immunoreactivity, in areas of the dorsal horn associated with the termination sites of nociceptors (Nackley et al., 2003). In rodent models of pain, the antinociceptive effects of peripherally administered cannabinoid agonists were reversed by cannabinoid CB₁ receptor antagonists (Johanek and Simone, 2004; Nackley et al., 2003; Richardson et al., 1998). What's more, selective activation of peripheral cannabinoid CB₁ receptors by ACEA inhibited noxious mechanically-evoked responses of spinal neurons (Kelly et al., 2003). In each of these studies it was hypothesised that effects were mediated by activation of cannabinoid CB₁ receptors on the peripheral terminals of primary afferent neurones. The findings of the present study and the previous demonstration of effects of ACEA on dorsal root ganglia neurones in culture (Sagar et al., 2005) strengthen this hypothesis.

CNS side effects, such as anxiety and sedation and also abuse potential have limited the re-introduction of cannabinoids as medications. The present study and evidence from earlier studies, suggests that cannabinoid CB₁ receptors located on neurones outside the CNS can mediate potent antinociceptive effects and may be an important target for cannabinoid derived analgesics. The findings of this study augment our understanding of the mechanisms of cannabinoid induced analgesia.

Acknowledgements

This study was supported by the Wellcome Trust U.K. (Ref 066759).

References

Agarwal, N., Pacher, P., Tegeder, I., Amaya, F., Constantin, C.E., Brenner, G.J., Rubino, T., Michalski, C.W., Marsicano, G., Monory, K., Mackie, K., Marian, C., Batkai, S., Parolaro, D., Fischer, M.J., Reeh, P., Kunos, G., Kress, M., Lutz, B., Woolf, C.J., Kuner, R., 2007. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat. Neurosci. 10, 870–879.

- Ahluwalia, J., Urban, L., Bevan, S., Capogna, M., Nagy, I., 2002. Cannabinoid 1 receptors are expressed by nerve growth factor- and glial cell-derived neurotrophic factor-responsive primary sensory neurones. Neuroscience 110, 747–753.
- Baker, C.L., McDougall, J.J., 2004. The cannabinomimetic arachidonyl-2-chloroethylamide (ACEA) acts on capsaicin-sensitive TRPV1 receptors but not cannabinoid receptors in rat joints. Br. J. Pharmacol. 142, 1361–1367.
- Binzen, U., Greffrath, W., Hennessy, S., Bausen, M., Saaler-Reinhardt, S., Treede, R.D., 2006. Co-expression of the voltage-gated potassium channel Kv1.4 with transient receptor potential channels (TRPV1 and TRPV2) and the cannabinoid receptor CB1 in rat dorsal root ganglion neurons. Neuroscience 142, 527–539.
- Bridges, D., Rice, A.S., Egertova, M., Elphick, M.R., Winter, J., Michael, G.J., 2003. Localisation of cannabinoid receptor 1 in rat dorsal root ganglion using in situ hybridisation and immunohistochemistry. Neuroscience 119, 803–812.
- Calignano, A., La Rana, G., Giuffrida, A., Piomelli, D., 1998. Control of pain initiation by endogenous cannabinoids. Nature 394, 277–281.
- Ellington, H.C., Cotter, M.A., Cameron, N.E., Ross, R.A., 2002. The effect of cannabinoids on capsaicin-evoked calcitonin gene-related peptide (CGRP) release from the isolated paw skin of diabetic and non-diabetic rats. Neuropharmacology 42, 966–975.
- Gutierrez, T., Farthing, J.N., Zvonok, A.M., Makriyannis, A., Hohmann, A.G., 2007. Activation of peripheral cannabinoid CB1 and CB2 receptors suppresses the maintenance of inflammatory nociception: a comparative analysis. Br. J. Pharmacol. 150, 153–163.
- Hillard, C.J., Manna, S., Greenberg, M.J., DiCamelli, R., Ross, R.A., Stevenson, L.A., Murphy, V., Pertwee, R.G., Campbell, W.B., 1999. Synthesis and characterization of potent and selective agonists of the neuronal cannabinoid receptor (CB1). J. Pharmacol. Exp. Ther. 289, 1427–1433.
- Hohmann, A.G., 2002. Spinal and peripheral mechanisms of cannabinoid antinociception: behavioral, neurophysiological and neuroanatomical perspectives. Chem. Phys. Lipids 121, 173–190.
- Hohmann, A.G., Herkenham, M., 1999. Cannabinoid receptors undergo axonal flow in sensory nerves. Neuroscience 92, 1171–1175.

- Johanek, L.M., Simone, D.A., 2004. Activation of peripheral cannabinoid receptors attenuates cutaneous hyperalgesia produced by a heat injury. Pain 109, 432–442.
- Kelly, S., Jhaveri, M.D., Sagar, D.R., Kendall, D.A., Chapman, V., 2003. Activation of peripheral cannabinoid CB1 receptors inhibits mechanically evoked responses of spinal neurons in noninflamed rats and rats with hindpaw inflammation. Eur. J. Neurosci. 18, 2239–2243.
- Lynn, B., Carpenter, S.E., 1982. Primary afferent units from the hairy skin of the rat hind limb. Brain Res. 238, 29–43.
- Maccarrone, M., Di Rienzo, M., Battista, N., Gasperi, V., Guerrieri, P., Rossi, A., Finazzi-Agro, A., 2003. The endocannabinoid system in human keratinocytes. Evidence that anandamide inhibits epidermal differentiation through CB1 receptor-dependent inhibition of protein kinase C, activation protein-1, and transglutaminase. J. Biol. Chem. 278. 33896–33903.
- Millns, P.J., Chapman, V., Kendall, D.A., 2001. Cannabinoid inhibition of the capsaicininduced calcium response in rat dorsal root ganglion neurones. Br. J. Pharmacol. 132, 969–971
- Nackley, A.G., Suplita II, R.L., Hohmann, A.G., 2003. A peripheral cannabinoid mechanism suppresses spinal fos protein expression and pain behavior in a rat model of inflammation. Neuroscience 117, 659–670.
- Richardson, J.D., Kilo, S., Hargreaves, K.M., 1998. Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain. 75, 111–119.
- Sade, H., Muraki, K., Ohya, S., Hatano, N., Imaizumi, Y., 2006. Activation of large-conductance, Ca2+-activated K+ channels by cannabinoids. Am. J. Physiol., Cell. Physiol, 290, C77–C86.
- Sagar, D.R., Kelly, S., Millns, P.J., O'Shaughnessey, C.T., Kendall, D.A., Chapman, V., 2005. Inhibitory effects of CB1 and CB2 receptor agonists on responses of DRG neurons and dorsal horn neurons in neuropathic rats. Eur. J. Neurosci. 22, 371–379.
- Stander, S., Schmelz, M., Metze, D., Luger, T., Rukwied, R., 2005. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J. Dermatol. Sci. 38, 177–188.